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Abstract

The increasing availability of human electrophysiolog-
ical data has enabled the development of refined myocyte
models with detailed transmembrane current descriptions.
This fidelity is typically achieved via stiff systems of or-
dinary differential equations (ODEs) that span disparate
time scales and force small integration steps, especially for
the fast sodium current INa conducted by Nav1.5. Explicit
schemes may require sub-microsecond steps (e.g., 0.1 µs)
to resolve upstroke and refractory dynamics, causing sub-
stantial computational costs for single-cell, tissue, and or-
gan simulations. We present a hybrid approach in which
a physics-informed neural network (PINN) surrogates the
Nav1.5 gating kinetics for the activation m and dual in-
activation gates h1, h2 and replaces the corresponding
ODE subsystem in a human atrial action potential model.
The PINN is trained to match the observed current-voltage
relation while penalizing violations of the known gating
ODE structure. We assess fidelity and quantify speedups
up to 2.5x faster and stability with enlarged time steps in
paced simulations (0.18 mV RMSE). The resulting surro-
gate reproduces gating-dependent INa behavior while ma-
terially reducing wall-clock time, suggesting a tractable
path to high-fidelity, large-scale simulations and down-
stream personalization workflows.

1. Introduction

Cardiac cellular electrophysiology has advanced rapidly
with high-quality experimental data from patch-clamp ex-
periments, optical mapping, and clinical recordings. Mod-
ern myocyte models leverage these data to describe trans-
membrane currents and ion channel gating with grow-
ing biophysical detail. However, such fidelity is typi-
cally achieved through systems of stiff ordinary differen-
tial equations (ODEs) whose dynamics span several or-
ders of magnitude in time. Explicit integrators can de-
mand extremely small time steps to remain stable and ac-
curate, which makes large-scale or long-duration simula-

tions computationally expensive. The fast gating kinetics
of the voltage-gated sodium channel Nav1.5 are a prime
example: rapid state transitions can force sub-microsecond
steps (e.g., 0.1 µs) for explicit schemes to capture upstroke
dynamics and refractory behavior. Implicit or adaptive
solvers alleviate some of this burden but add algorithmic
complexity and remain costly when embedded in tissue-
or organ-level models, or during parameter estimation and
personalization.

Data-driven surrogates offer a promising route to accel-
erate these computations, but purely black-box neural net-
works risk violating physical constraints and can general-
ize poorly beyond the training regime. Physics-informed
neural networks (PINNs) incorporate governing equations
and known structure directly into the training objective,
encouraging solutions that satisfy the dynamics while re-
taining the expressive power of neural function approxima-
tors [1]. Ion channel gating is well suited to this paradigm
because variables are bounded, voltage-dependent, and
governed by ODEs with known qualitative behavior.

Here, we investigate a hybrid formulation in which a
PINN models the gating kinetics (m,h1, h2) of Nav1.5,
replacing the corresponding ODE subsystem in a human
atrial action potential model (following Skibsbye et al. [2].
The surrogate is trained to satisfy gating differential re-
lations across a range of voltages, with additional con-
straints enforcing physiological bounds and smoothness.
We evaluate the approach on the single-cell level under
voltage-clamp and action potential-clamp protocols and on
the tissue level where sodium kinetics strongly influence
excitability, conduction, and refractory properties. We ex-
amine fidelity to the reference model, stability under larger
time steps, and computational efficiency.

2. Methods

2.1. Model overview

We construct a PINN that maps transmembrane voltage
Vm to the three gating variables of Nav1.5: activation m
and dual inactivation gates h1, h2. The fast sodium current
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Figure 1. Architecture used to predict sodium-channel gates from transmembrane voltage. The network takes a scalar
input Vm, applies a 64-unit Dense layer, then a stack of four residual blocks (each: Dense(64)→Softplus(β=5) with a skip
connection and BatchNorm), and finally a Dense(3) that outputs the Nav1.5 gating triplet (m,h1, h2). The top bracket
annotates the 4× residual-block stack; arrows indicate forward data flow.

is computed as

INa(Vm) = ḠNa m
3h1h2

(
Vm − ENa

)
, (1)

where ḠNa is the maximal conductance and ENa is the
sodium reversal potential.

2.2. Reference relations and target current

Voltage-dependent steady states and time constants were
specified for activation and inactivation:

m∞(Vm), τm(Vm), h∞(Vm), τh1(Vm), τh2(Vm),

including Q10/temperature adjustments at T = 310.15K.
The sodium reversal potential was computed from
intracellular and extracellular sodium concentrations
(Nai=7.7869, Nao=130) via

ENa [mV] = 103
RT

F
ln

(
Nao
Nai

)
. (2)

With ḠNa = 576, a target current for supervised learn-
ing was generated on a uniform grid of N = 1000 colloca-
tion voltages spanning Vm ∈ [−100, 100]mV by inserting
steady states into (1):

I target
Na (Vm) = ḠNa

[
m∞(Vm)

]3
h∞(Vm)h∞(Vm)

(
Vm−ENa

)
.

(3)

2.3. PINN architecture

The PINN was fully implemented in Python using Py-
torch [3]. The architecture is a fully connected network
shown in Figure 1. The input of the network is the trans-
membrane voltage at each time step and the output are pre-
dicted values for the Nav1.5 channel gates.

2.4. Physics-informed objective

Let (m,h1, h2) = Nθ(Vm) denote network predictions
at a collocation voltage Vm. The composite objective

L = Ldata + λphys Lphys + λgrad Lgrad (4)

includes the loss components described in the following.

2.4.1. Data loss (INa current residual)

Ldata =
∥∥∥ḠNa m

3h1h2 (Vm − ENa)

− ItargetNa (Vm)
∥∥∥2
2
.

(5)

2.4.2. Physics loss (gating ODE residuals)

We regularize toward first-order kinetics

dm

dt
=

m∞(Vm)−m

τm(Vm)
,

dh1

dt
=

h∞(Vm)− h1

τh1(Vm)
,

dh2

dt
=

h∞(Vm)− h2

τh2
(Vm)

.

(6)

Using automatic differentiation with respect to Vm at train-
ing points,

Rm =
dm

dVm
− m∞(Vm)−m

τm(Vm)
, (7)

Rh1
=

dh1

dVm
− h∞(Vm)− h1

τh1
(Vm)

, (8)

Rh2 =
dh2

dVm
− h∞(Vm)− h2

τh2
(Vmm

, (9)

and

Lphys = ∥Rm∥∈∈ + ∥Rh1∥∈∈ + ∥Rh2∥∈∈. (10)

Remark: Under prescribed voltage protocols, time and
voltage derivatives relate via the chain rule d(·)/dt =
(d(·)/dVm) (dVm/dt).

2.4.3. Smoothness penalty

A small penalty discourages oscillatory solutions:

Lgrad =

∥∥∥∥ dm

dVm

∥∥∥∥
2

+

∥∥∥∥ dh1

dVm

∥∥∥∥
2

+

∥∥∥∥ dh2

dVm

∥∥∥∥
2

. (11)
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We set λgrad = 0.01 and use a dynamic physics weight

λphys = min
(
0.1,

Ldata

100

)
, (12)

so the physics term gains relative weight as current mis-
match decreases.

2.5. Training

We used N = 1000 collocation voltages in full-batch
mode and the AdamW optimizer. A cosine-annealing-
with-restarts scheduler was applied initially, followed by a
plateau scheduler to reduce the learning rate when the loss
stalled. Early stopping was used so that training continued
until the composite loss satisfied L < 10−4.

3. Results

3.1. Single-cell fidelity

Across the test grid, the PINN-based current closely
matched the supervised I–V relation, preserving the sharp
rise of INa near activation thresholds and the attenuation
associated with inactivation. Predicted gates were smooth
and monotonic in physiologically expected regions, and
no spurious oscillations were observed. Figure 2 shows
the predictions made by the PINN model for the INa gates.
Figure 2A shows the prediction for the m gate where there
is no difference compared to the ODE dynamics. Fig-
ure 2B+C show the prediction for the inactivation gates.
The predictions by the PINN differ from the ODE espe-
cially for the h2 gate.

The hybrid PINN-ODE model reproduced the action
potential morphology with high fidelity (RMSE 0.18mV
over the full trace). A summary of the action potential
properties are shown in Table 1. The upstroke timing
and overshoot had a small deviation (4 V/s) from the ref-
erence, and both models returned to the same resting po-
tential. The largest visible discrepancies occurred around
the plateau and early repolarization, where the PINN trace
was slightly more negative, consistent with a mild accel-
eration of repolarization (Figure 3). Late repolarization
aligns again closely with an APD90 difference of 6.6ms.
These small, localized errors are compatible with resid-
ual inaccuracies in the learned inactivation kinetics and
could in future be further reduced by incorporating action
potential-clamp sequences or emphasizing loss terms near
plateau voltages during training.

3.2. Computational performance

The ODE model was integrated using a Rush-Larsen
scheme for the gating ODEs and Euler for the rest of the
ODEs. In paced single-cell simulations, the hybrid model

Biomarker Ground truth ODE PINN-ODE
APD90 (ms) 283.8 284.4
RMP (mV) −74.8 −74.8

dV/dtmax (V/s) 217.5 213.4
APA (mV) 103.0 103.0

Table 1. Action potential properties at 1Hz. Biomarker
values are shown for the mechanistic ground truth ODE
model and the hybrid PINN-ODE model.

reduced wall-clock time by a factor of 2.1× at a baseline
step of 10 µs. Moreover, stable simulations were obtained
with a tenfold larger time step (from 10 µs to 100 µs), while
maintaining a root-mean-square error below 0.25mV dur-
ing repolarization over 100 stimuli at 1Hz.

3.3. Action potential restitution

Because refractoriness is strongly governed by sodium
inactivation, we examined restitution (Figure 4). The hy-
brid approach preserved key action-potential features, with
a maximum deviation of 25ms in the restitution curve for
pacing rates below 2.5Hz. Deviations were primarily at-
tributable to residual errors in the predicted inactivation ki-
netics.

4. Discussion

The results indicate that a physics-informed surrogate
for Nav1.5 gating can largely reproduce the reference cur-
rent while enabling materially larger time steps. Embed-
ding the surrogate in the membrane model eliminates the
stiffest subsystem without discarding mechanistic struc-
ture elsewhere, thus preserving interpretability and com-
patibility with existing pipelines. Compared with blackbox
alternatives, the physics terms constrain learning to adhere
to known kinetics, improving robustness when extrapolat-
ing across voltage protocols.

5. Limitations and future work

First, supervised training used voltage-collocation
points with currents synthesized from steady-state rela-
tions; incorporating dynamic clamp data and time-resolved
protocols should further improve fidelity. Second, outputs
were unconstrained; sigmoidal squashing or barrier terms
could enforce m,hi ∈ [0, 1]. Finally, multi-current surro-
gates (e.g., IKr, ICaL) or intracellular ion concentration (e.g.
Ca2+) could yield additional speedups for tissue and organ
simulations.
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Figure 2. Gate open probabilities for the ODE (ground truth) and the prediction of the PINN model. A) Traces for the m
gate. B) Traces for the h1 gate. C) Traces for the h2 gate

Figure 3. Transmembrane potential of the hybrid PINN-
ODE model at 1 Hz. The traces correspond to the last ac-
tion potential out of 100.

Figure 4. Restitution curve of APD at 90% repolarization.

6. Conclusion

A PINN surrogate for Nav1.5 gating reproduces key
INa features while substantially reducing computational

cost and permitting larger time steps in paced simulations.
This modular replacement of a known stiffness bottle-
neck makes high-fidelity electrophysiology models more
tractable for large-scale in silico experimentation and per-
sonalization.
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